assert_true #
pyspark.sql.functions.assert_true(col, errMsg=None) #
version: since 3.1.0
Returns null if the input column is true; throws an exception with the provided error message otherwise.

Runnable Code:
from pyspark.sql import functions as F
# Set up dataframe
data = [{"a": 1,"b": 2}]
df = spark.createDataFrame(data)
# Use function
f = (df
     .withColumn("assert_true",
                 F.assert_true(
                     F.col("a") < F.col("b")))
     )
df.show()
| a | b | assert_true | 
|---|---|---|
| 1 | 2 | null | 
Usage:
Never used it. But I could see it being useful for some form of validation. The fact that it throws an error message is a strange way to use PySpark. Would you have to create a column to throw the message?
returns: Column(sc.\_jvm.functions.assert_true(\_to_java_column(col), errMsg))
tags: check two columns, validation
© 2023 PySpark Is Rad